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The phase-averaged large-scale structures in 
three-dimensional turbulent wakes 
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(Received 30 May 1979 and in revised form 7 April 1980) 

Experiments are described which show that large-scale coherent structures exist in the 
wakes behind three-dimensional blunt bodies. Using a ‘flying hot-wire’ apparatus, 
the vortex-shedding cycle has been described by phase-averaged vector fields allowing 
an animation of large-scale motions to be produced. It is found that the large-scale 
structures retain their identity for long streamwise distances and contribute sig- 
nificantly to the Reynolds stress. 

Using critical-point theory as described recently by Perry, Lim & Chong (1980), the 
effect of phase ‘jitter’ on ‘washout’ han been analysed. Furthermore, it is found from 
critical-point theory that the large-scale motions possess the same geometrical fea- 
tures as the low-Reynolds number (unsteady laminar flow) wake results of Perry & 
Lirn (1978) and Perry et ul. (1980). 

1. Introduction 
The aim of this work is to see whether any statistical measurements based on phase 

of vortex shedding could be made which would reveal the shape of representative 
large-scale eddy structures behind blunt three-dimensional bodies a t  high Reynolds 
numbers. Conventional statistical measurements fail to give this insight. The authors 
find that, even with the crudest forms of phase detection, recognizable structures and 
patterns emerge. Not only can they be recognized and seen to retain their identity 
for long streamwise distances, but the large-scale entrainment processes are also 
evident and are consistent with the low-Reynolds-number non-turbulent results of 
Perry et al. (1980). 

Perry & Lim (1978) performed a series of experimental investigations of coflowing 
wakes and jets at Reynolds numbers of the order 300 to 1000. Smoke was observed 
issuing from a glass tube and structures were seen to form in the smoke and they 
remained coherent for long streamwise distances. They defined coherence to mean 
that eddying motions retain their identity even though their shape, velocity and 
length scales undergo continual change as they are convected downstream. The 
structures were seen to modulate in scale and frequency and, in order to study them 
in detail, the tube was subjected to a small lateral oscillation. The structures were 
then ‘locked in’ and they appeared perfectly frozen when viewed under stroboscopic 
light. The velocity at a given point therefore was perfectly periodic in time. 

The existence of coherent large-scale structures behind bodies at high Reynolds 
numbers is well established (e.g. see the flow-visualization studies by Papailiou & 
Lykoudis ( 1974) for the wake behind a cylinder). Perry & Lim conjectured that their 
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( b )  
FIG- 1. Interpretations of three-dimensional wake structures. (a) Interpretation of the way 
the smoke (i.e. the cylindrical vortex sheet) is folded in a coflowing wake (after Perry et aZ. 1980). 
(b) Interpretation of the instantaneous streamline pattern aa seen by an observer moving with 
the structures given in (a) above. Cross-btching indicates the smoke (after Perry et aZ. 1980). 
In  wakes behind bodies, cross-hatching would indicate boundary-layer material and hatched 
zones would be much narrower. 

‘frozen ’ structures might have relevance to  these large-scale structures of turbulence. 
There is some evidence for this. For example, the low-Reynolds-number positively 
buoyant jets (e.g. cigarette smoke) bear a strong resemblance to the high-Reynolds- 
number flow of smoke issuing from a, chimney in cross-flow (see figure 6 of Perry & Lim). 

Of particular interest to the work reported here are the neutrally buoyant co- 
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flowing wakes shown issuing from a tube illustrated in their figure 5 ( b ) .  It was found 
that these structures bear a strong resemblance to the naturally occurring (i.e. no 
forcing) wake behind a three-dimensional blunt body as shown in their figure 5 (f ). 
These structures are the three-dimensional version of the classical von K k m h  vortex 
street. In  the case of coflowing wakes a cavity need not occur but, in the case of blunt 
bodies, the volume flow of boundary-layer material which comprises the coflowing 
component is usually so small that a cavity does occur. However, the flow beyond the 
cavity of a body does indeed resemble the coflowing wakes of Perry & Lim. 

Recently, Perry et al. (1980) performed hot-wire measurements of these types of 
structures using a phase-averaging technique and velocity fields were interpreted 
with the aid of critical-point theory. Figures 1 (a) and (b) show their interpretations 
and the deduced instantaneous streamline pattern as seen by an observer moving 
with the structures. The authors set out to produce a corresponding vector field plot 
for the high-Reynolds-number case and to utilize the critical-point theory given in 
Perry et al. for interpreting the patterns which emerge. 

Because the structures of Perry et al. (1980) were so periodic in time, the vector 
fields could be produced by conditionally sampling data on the basis of the precise 
phase of tube oscillation. The periodicity of the velocity field meant that only 10 
samples a t  each point and phase were needed for convergence of the phase-averaged 
data. However in the high-Reynolds-number flow the large-scale motions modulate 
in frequency and scale (phase jitter) and superimposed on these large motions are 
fine-scale motions containing appreciable turbulent energy. Far more data are needed 
before convergence is achieved so that the fine-scale motions and ‘phase jitter’ are 
averaged out. 

Cantwell (1975) studied the near wake of a two-dimensional circular cylinder at  a 
Reynolds number of 140000. A sensor responding to surface pressure variations was 
used to detect the phase of the vortex shedding as signals from crossed-wire probes 
attached to whirhng arms were sampled at closely spaced points in the near wake. 
The whirling arms were used to subject the wires to an additional bias velocity to 
remove the flow directional ambiguity problems in the cavity of the cylinder where 
reverse flow was occurring. By sorting the data taken at  each point into 16 groups 
corresponding to successive phase intervals of the surface pressure signal, the fine- 
scale motions were averaged out, resulting in a 16-frame animation of the entire 
measured field in terms of the large-scale motions. The phase-averaging technique 
revealed coherent structures having an appearance resembling the computed results 
of the classical von K&rm&n potential flow solution, which is known to be applicable 
at Reynolds numbers of order 1000. Cantwell pioneered the technique of rapidly 
sampling data from wires moving through a flow. The authors have extended the 
technique in the present work and have modified it to produce results more rapidly 
and with far less data storage problems than experienced by Cantwell. 

2. Apparatus and procedure 
Figure 2 shows a schematic layout of the apparatus used by the authors. A crossed- 

wire probe was attached to a sting fastened to an air-bearing sled which rode on the 
top of the wind tunnel working section. The sting passed through a slot cut in the 
working-section roof and the sled was propelled back and forth continually by means 
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FIGURE 2. Overall layout of flying hot-wire machinery. Mechanism for splitting the body to 
enable wires to pass through cavity and body also shown. PT means photo-transistor. C means 
comparator. Strobe was used for indicating position of probe on opening of body. The photo- 
transistors for computer control and data acquisition are not shown. 

of a catapult mechanism at the downstream end and a return spring system a t  the 
other end. The luffing mechanism shown carried a compressed air line to the sled and 
electrical cables to the probe and the stepping motor vertical-traversing drive. The 
flow in the near and far wakes of a three-dimensional blunt body was sampled as the 
sled was moving upstream towards the body. As in Cantwell's experiment the super- 
imposed bias velocity of the wires meant that measurements could be taken in regions 
of reversed flow without the problems of directional a.mbiguity. The flow was rapidly 
sampled at  closely spaced points along horizontal rows of the working section using 
a computer-controlled data acquisition system. This system consisted of an EAI TR48 
analog computer and logic box in line before a PDP 11-10 digital computer fitted with 
a Laboratory Peripheral System (LPS). 

The position of the wires along the tunnel was monitoredvery accurately by counting 
pulses from a photo-detector system attached to the sled. The photo-detector system 
rode past a grating producing a pulse every millimetre of sled movement. These 
pulses were used to control the sampling of data. The velocity of the sled was obtained 
by demodulating the frequency of the pulses in much the same way as does an analog 
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LDV processor. During the sled motion, the phase of the vortex-shedding process 
behind the blunt body and the sled velocity were also recorded. At the end of a sled 
pass, the data taken a t  each point along a row were sorted into one of sixteen groups, 
each corresponding to an interval of the phase of the vortex-shedding cycle. The bias 
velocity of the sled improved the linearity of the hot wires, and the authors found that 
the variance of the data for a fixed position and phase were sufficiently small to 
assume linearity and hence voltages could be averaged first before converting the 
data to phase-averaged velocities. By repeating the process along different rows, 
sixteen phase-averaged vector plots of the measured flow field were obtained. Cant- 
well did not wsume this linearity, which meant that he had to store each individual 
sampled voltage for post-experimental processing, using a nonlinear hot-wire calibra- 
tion inversion program. 

The analog computer was used to scale the two hot-wire channel voltages and 
combine them in such a way as to produce a voltage El sensitive only to streamwise 
velocity perturbations (u’) and a voltage E,  sensitive only to vertical velo ity per- 
turbations (v’)  over the range of operating points to be experienced by the wires. This 
‘matching’ procedure could be carried out very accurately and rapidly using two 
shakers. The dynamic calibrator of Perry & Morrison (1971) was modified to shake 
the sled back and forth sinusoidally to provide the u‘ perturbation. Another dynamic 
calibrator was used to impose vertical sinusoidal velocity perturbations (1)’) in situ. 
Once the matching procedure was completed the wires and circuits were then 
dynamically calibrated using the techniques of Perry & Morrison. These techniques 
were improved by using digital methods. The operating point of the wires ww defined 
by the voltages El and E,, which are nonlinear functions of velocity. A second-order 
polynomial curve fit was applied to these nonlinear functions over the range of 
operating points used in the experiments. 

The first- and second-order coefficients of this polynomial were obtained from the 
’dynamic calibrations and the zeroth-order term was obtained from a static calibra- 
tion. Agreement of the polynomial to the static data points was excellent over the 
operating range used. The analog computer was also used to subtract bias voltages at 
various points in the circuits so that the voltage perturbations could be amplified to 
fill the voltage window of the computer and thus provide maximum numerical 
resolution. The hot-wire calibrations required no assumptions regarding wire angles 
nor was any form of heat-transfer law needed. 

The greatest problem with the calibrations came from drift with time. Eddying 
motions are best viewed in a frame of reference moving with their convection velocity. 
In  practice this is achieved by subtracting the mean convection velocity from the 
results before they are plotted. Hence, the geometry of the eddying motions critically 
depend on the phase-averaged perturbations. Drift in the hot-wire calibrations was of 
order of 2 yo of the inferred mean velocity over the typically 15 h required for an 
experiment. This small drift had a measurable effect on the patterns and showed up 
as discontinuities in the vector field between rows. I ts  effect on a given row was to 
uniformly influence the temporal mean velocities. The effects on the phase-averaged 
perturbations were of second order and negligible. The resulting discontinuity from 
row to row in the vector field was corrected by using information obtained from the 
traversing of the flow at two fixed streamwise locations with the same crossed-wire 
probe at  the end of the experiments. 
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One method of detecting vortex shedding was to use a stationary hot wire located 
in the wake. The pseudo-periodic signal was bandpass filtered to remove high- 
frequency components and the resulting signal was passed through a comparator. 
Each leading edge of the comparator output was defined to be the beginning of a new 
cycle and the time interval between the leading edges was divided up into 16 phase 
intervals by the computer software. Since the data were sorted into phase boxes & of 
a cycle wide, attempts to obtain spatial resolution better than of a structure wave- 
length is pointless. This meant that high-frequency components of the signals from 
the moving probe could be removed by low-pass filtering them at a frequency of an 
order of magnitude greater than the frequency of vortex shedding. The authors 
found by experiment that filtering the hot-wire signals increased the rate of data 
convergence by an order of magnitude. A further means of reducing running time was 
to use multiple-point smoothing along each row of data of constant phase. The 
smoothing process consisted of averaging data at a given point with neighbouring 
points, taking into account the number of samples a t  each point. 

A special program was used to display successive phase-averaged voltages on an 
oscilloscope. To the eye the animation appeared to be like a wave form propagating 
across the screen. By collecting data along just one row with uncalibrated wires, one 
could know after 45 min running time whether phase-averaged coherent structures 
were present without having to measure the entire flow field. 

It is anticipated that a complete detailed report on the apparatus, methods of 
hot-wire calibration and data reduction wil l  be published. Such information is at 
present contained in a thesis by Watmuff (1979). 

3. Critical-point theory and the effect of phase jitter 
At the outset it will be assumed that the inviscid constant vorticity critical-point 

theory applied by Perry et al. to unsteady laminar flow patterns can also be applied 
to each instantaneous large-scale structure, i.e. the effect of he-scale motions are 
being ignored. Perry & Fairlie (1974, 1975) applied this critical-point theory to a 
stationary turbulent separation bubble with some success. Three types of critical 
points are needed for the work described here. These are two regular critical points, 
namely the centre and the saddle, and one irregular critical point, namely the ‘dis- 
located’ saddle sitting on a vortex sheet. These critical points are the salient features 
of eddying motions and it will be assumed that they are translating with a uniform 
velocity with the structures. When viewed in this frame of reference the centres 
correspond with pressure minima and saddles with pressure maxima. 

Figure 3 shows a conjectured wake behind a blunt body at two instants of time. 
Here, the vortex-shedding process is not perfectly periodic and the eddy structures 
modulate in frequency and scale. Also shown in the figure are wave forms from a phase 
detector where the leading edge of the phase detector signal is arbitrarily shown to 
represent the beginning of a vortex-shedding cycle. At the two instants shown, the 
phase detector indicates that the patterns are a t  the same phase. However it can be 
seen that eddy A and eddy A’ downstream of the phase detector are in quite different 
locations. Hence eddies which are being phase averaged in this vicinity will be ran- 
domly positioned according to some probability density function (p.d.f.) as illustrated 
in the figure. This random positioning of the eddies at a given phase will be referred 
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FIQURE 3. Phase jitter. Frequency modulation causes downsbarn eddies to appear in different 
locations although the phase detector indicates the same phase. 

to here as ‘phase jitter’ and, if it is large enough, ‘washout’ of the phase-averaged data 
will occur. The further downstream one goes, the larger will be the phase jitter and the 
broader will be the spread of the p.d.f. and hence the larger will be the washout. 

The main source of the jitter is of course in the randomness of the vortex shedding 
but this may be enhanced by other effects, such as phase changes through analog 
filters, amplitude modulation of signals going to comparators and the arbitrary way 
phase is assigned by the computer software. 

To investigate the effects of jitter one could consider simple flow patterns with 
critical points, randomize their positions and look at  the properties of the averaged 
patterns. Close to a regular critical point the velocity components vary linearly with 
distance from the critical point and to this linearized approximation the vorticity is 
constant. Along any particular ray emanating from the critical point 

IuI = Kr, 

where u is the velocity vector and r is the distance along the ray. The constant K will 
be referred to as the ‘strength’ of the pattern. Let the velocity distribution given by 
(1) be perturbed by shifting bodily the critical point in a random fashion described by 
an arbitrary p.d.f. Then the ensemble average of the velocity distribution will remain 
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unaltered from tha t  given by (1) provided that the mean of the p.d.f. is at r = 0. 
Thus the average of a ‘jittered ’ regular critical point is the same as the unjittered case. 

Now, consider the pressure distribution about a jittered critical point. The pressure 
distribution about an unjittered critical point possesses circular isobars which belong 
to a parabola of revolution (Perry & Fairlie (1974), Perry et aZ. (1980)) with the axis 
of symmetry passing through the critical point. Since the slope of the pressure dis- 
tribution is linear with r for the unjittered critical point, so also will be the slope of 
the pressure distribution of the averaged critical point. Hence the second derivative 
or curvature of the pressure distribution after averaging remains unaltered, but the 
pressure maximum or minimum is altered. The second derivative of pressure, together 
with the vorticity, controls the pattern. Hence the averaged regular critical point 
when expressed in terms of mean flow quantities follows the same laws as for the 
unjittered critical point as expressed by Perry & Fairlie and Perry et al. If the scale 
of jittering of a regular critical point exceeds the scale of the region of linearity, then 
the averaged flow will still exhibit the critical point but its strength will be diminished 
and it will be distorted. If the degree of jitter is greater than or equal to a wavelength 
of a coherent structure then complete washout may occur. 

Phase-plane portraits of nonlinear dynamical systems are very useful for generating 
patterns which possess similar geometrical properties to eddying motions. The phase 
plane of a simple pendulum is described by the nonlinear differential equation, 

B+fsine = 0, (2) 

where 0 is the amplitude of oscillation, g is the acceleration due to  gravity and 1 is the 
pendulum length. This system is conservative so that only centres and saddles appear 
in the phase plane. By putting 

x1 = e, x2 = 6, (3)) (4) 

the instantaneous velocity of any solution point as it moves along its solution trajec- 
tory is given by 

u = XI = x2, (6) 
w = k2 = - (g/Z) sin xl. (6) 

The velocities at a grid of points can be represented by velocity vectors as illustrated in 
figure 4 (a).  The pattern of velocity vectors shows a resemblance to flows in which only 
two-dimensional critical points (centres and saddles) appear. For example, the phase 
plane bears a resemblance to the flow pattern in a two-dimensional shear layer as seen 
by an observer moving with the structures, i.e. the Kelvin-Helmholtz-like roll-up of 
a vortex sheet possesses these ‘eat’s eye’ patterns. In fact equations ( 5 )  and (6) 
satisfy the continuity equation and are asymptotic solutions of the Navier-Stokes 
equations close to the critical points. Far from the critical points the solutions are 
nonlinear and depart from the Navier-Stokes equations. Nevertheless this phase 
plane will serve as a useful mathematical model to illustrate certain effects which 
occur when real flows are phase averaged. 

Randomization or jittering of the pendulum phase plane can be accomplished as 
follows. Imagine that the ‘pendulum eddies’ are convecting past a stationary reference 
such that the convection velocity (defined by the product of frequency and structure 
wavelength) is constant. When a phase-plane centre passes the stationary reference 
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(C) 
I 

FIGURE 4. Velocity vectors of ‘pendulum’ eddies. (a) Unjittered pendulum eddies. ( b )  Phase- 
averaged jittered pendulum eddies. (c) Same as ( b )  but with the effect of phase shift of filters 
included. 

consider that the entire ‘flow field’ can be measured simultaneously. Furthermore, 
restrict the wavelength within each group of ‘coherent structures’ to be constant but 
let each group have a different wavelength. By associating a p.d.f. with the wavelength 
(or frequency) distribution, an artificial ‘ phase-averaged ’ representation of the flow 
field can be produced. 

This exercise was performed on a digital computer using an experimentally obtained 
p.d.f. of the frequency of vortex shedding behind the oblate ellipsoid described in 54. 
Figure 4 ( b )  shows the phase-averaged flow field obtained by jittering the pendulum 
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eddies with this experimental data. The frequency or wavelength jitter causes wash- 
out of the vertical velocity components (no washout occurs for the streamwise velocity 
components for this particular case, see equation (5)). 

For simplicity, a normal distribution can be used to analyse the washout. The 
vertical velocity component of the pendulum eddies can be expressed as 

v = -As~@x~). (7) 

Let p be normally distributed about a mean value p with a variance 6. Then 

A 

and this leads to 
V = -A [exp { - J@x2}] sin (j.jxl). 

It can be seen that the averaged vertical velocity component decays with distance 
downstream. 

It was thought that the effect of signal phase shifting by the bandpass filter would 
cause even greater washout of the data, but the opposite was found to be true. Figure 
4(c) shows the ‘phase-averaged’ vector field obtained using the same frequency dis- 
tribution but with the phase shift of the filters included. The phase shift was calculated 
by assuming a steady-state sinusoidal filter response and the effect was included by 
shifting bodily each group of structures relative to the stationary reference. 

From these studies it is concluded that the effect of phase jitter is to wash out the 
downstream regular critical points. Closer to the phase detector the centres and 
saddles still retain their identity but their strength is diminished. The effect of phase 
shifting through filters appears to reduce this washout. 

Perry et al. (1980) have shown that saddles need not necessarily be joined together 
but that two half saddles may sit on a vortex sheet (the dislocated saddle). Using the 
notation of figure 5 (a) the velocity field in the vicinity of this irregular critical point 
is given by 

1 u = a(,+: .-at) for y -= 0, 

v =  -ay. ) 

Again, the isobars belong to a parabola of revolution a t  0 and a = J - P,, where 
I!, = Pyy are the second derivatives of kinematic pressure; E,, is the value of E at 
t = 0 shown in figure 5(a). The strength of the sheet and the dislocation distance 8 

decrease exponentially with time as the sheet is being stretched across the filaments. 
The location and development of dislocated saddles will vary from structure to 

structure due to phase jitter. It is simple to show that dislocated saddles sitting on a 
zero-thickness vortex sheet appearing at  different locations and at different stages of 
development will produce a phase-averaged critical point at the mean location and 
at the mean stage of development. It turns out that this phase-averaged structure, in 
the small and in the large, follows the same equations as found by Perry et al. (1980) 
for a dislocated saddle sitting on a vortex sheet of finite thickness provided the phase- 
averaged values of vorticity and pressure derivatives are used. 
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( b )  
FIQURE 5. (a) Instantaneous streamline pattern and notation used for a dislocated saddle sitting 
on a zero-thickness vortex sheet. (a) A phase-averaged dislocated saddle which has been jittered 
according to a normal distribution. 0 given by tan 0 = 2a/7 where 7 is the phase-averaged 
vorticity (see Perry et al. 1980). 
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FIGURE 6. Sketch showing position of body relative to measured regions and the stationary 
phase-detector hot wire. (a) Far wake. ( b )  Near wake. LP means low-pass filter. HP m e w  
high-pass filter. 

Figure 5 (b) shows the effect of averaging the dislocated saddle given by equation (10) 
which has been bodily ‘jittered’ about the mean location according to a normal dis- 
tribution. The isocline M = m and the eigenvectors at the critical point are super- 
imposed on the calculated velocity vector field together with the mean location of the 
half-saddles and the vortex sheet. In the large, the flow pattern still resembles a 
dislocated saddle but closer to the critical point the flow resembles a regular saddle 
in non-canonical form. The vorticity contained in the averaged sheet diminishes atj 
the variance increases. In  fact, infinite jitter leads to a regular irrotational saddle. 

The phase-averaged patterns produced by jittering all the critical points considered 
follow Euler’s equations of motion if phase-averaged quantities are used. It turns out 
that the phase-averaged Reynolds stresses have zero gradients at  the critical points 
and so also do the viscous stresses. A further broadening of the region of vorticity will, 
of course, occur due to the fine-scale Kelvin-Helmholtz-like roll-ups within the sheet. 
A photograph of such fine-scale roll-ups superimposed on a large-scale roll-up is shown 
in figure 6 of Pullin & Perry (1980) for a vortex sheet generated at a sharp edge. 

4. Results 
4.1. Flow conditions and the detection of coherence 

As was mentioned in the introduction, Perry & Lim (1978) found that the structures 
in a neutrally buoyant coflowing wake are basically the same (except for the cavity) 
88 those which occur naturally behind a blunt three-dimensional body such as a sphere. 
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FIQURE 7. The verticel velocity perturbations along the centre-line of body: (a) nmr wake; 
( b )  far wake; (0 )  far wake with phase detector shifted downstream; ( d )  far wake of oscillating 
body. 

By distorting the sphere into an oblate ellipsoid the orientation of the structures 
about a streamwise axis was stabilized. An oblate ellipsoid with a streamwise chord of 
127 mm, width of 220 mm and height of 73 mm was built for the purpose of studying 
the high-Reynolds-number flow c m .  The shedding of structures behind the body was 
found to be only very weakly periodic. Two sets of results were obtained. One set was 
obtained for the near wake and one for the far wake. For the near wake it was necessary 
to split the body by the mechanism shown in figure 2 to allow the hot-wire probe to 
pass through. This enabled the wires to possess a high bias velocity in the cavity and 
allowed valid results to be obtained within 2 ern of the body. The body remained open 
to allow the wires through and was closed during the return pass of the sled so that a 
new set of structures was established before the sled began its new sampling cycle. In  
the far-wake measurements, the bodywas not split. The free-stream tunnel velocity was 
4-29 m s-l and the velocity of the sled was 3-8 m s-l. Figure 6(a) and (b) show the 
position of the body, the measured region and the stationary phase-detector hot wire. 
The phase-detector circuits used in the experiments are also shown. All measurements 
were confined to the vertical centre-plane of the body and below the streamwise axis. 

Fifteen rows of data 10mm apart were sampled at 10mm intervals along the 
measuring sections and 800 sled passes and 5-point smoothing were utilized. The 
Reynolds number of the wake was 32 500 based on the streamwise chord of the body. 
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FIGURE 8. One of the sixteen phase-averaged vector fields as seen by an observer moving at the 
calculated convection velocity (3.9 m 8-l) for the near wake. The authors' interpretations of the 
separatrices (phase-averaged streamlines emanating from saddles) are superimposed. 

The positions of the stationary hot wire and the phase detector circuit variables were 
optimized by trial and error by viewing the animation of the phase-averaged hot-wire 
voltages mentioned earlier. The phase-averaged vertical velocity perturbations of 
phases 1 and 9 for the row corresponding to the body centre-line are shown plotted in 
figure 7 (a)-(c)  for each case. The decay of the wave forms bears a resemblance to the 
decay of the wave forms of the jittered pendulum eddies (see equation (9)). These 
phases are 180" apart and indicate a form of symmetry about the body centre-line. 
This type of symmetry and the alternate nature of vortex shedding permit the phase- 
averaged vector fields to be reflected about the body centre-line thus giving a complete 
picture of the wake (see Cantwell 1975). Various numerical and graphical methods 
were applied to determine the average wavelength of the structures. The mean 
frequency was determined with precision by long time averaging, thus enabling the 
convection velocity of the eddies to be accurately determined. 

A comparison between the near-wake and far-wake results shows that the coherence 
moves with the phase detector. In fact, figure 7 (c )  shows the far-wake results when the 
phase detector was moved 2400 mm behind the body. From these results, no large- 
scale vortex pairing seems to have occurred on average and the structures retain their 
identity up to 8 structure lengths behind the body. 

@ 

4.2. Phase-averaged vector Jields 

Sixteen velocity vector fields (representing 48 000 velocity vectors) have been plotted 
for each case studied but not all of these will be presented here owing to the volume of 
material involved. An animation movie has been made of each case. 

Figure 8 shows the phase-averaged vector field of the near wake for phase 7 
with the authors' interpretation of phase-averaged streamlines superimposed. The 
effect of phase jitter and subsequent washout is apparent as predicted by the pendulum 
eddy simulation, i.e. the strength of the vector field appears to diminish downstream. 
It can be seen that the separatrices possess the same general geometrical features as 
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I m s-’ Velocity scale 

FIGURE 9. One of’ the sixteen phase-averaged vector fields seen by an observer moving with the 
structures in the far wake of the ellipsoid with authors’ interpretations superimposed. Note the 
washout in the most downstream eddy giving the appearance of simple horizontal shear. 

1 m s-’ velocity scale - 

FIGURE 10. One of the sixteen phase-averaged vector fields seen by an observer moving with the 
structures in the far wake of the oscillating ellipsoid with the authors’ interpretations super- 
imposed. 

the low-Reynolds-number results of Perry et al. for a neutrally buoyant coflowing 
wake (figure 1 ) .  The alleyways discussed by these authors are apparent. 

In  interpreting these flow patterns the authors were guided by the critical point 
classification given by Perry et al. For instance, in two-dimensional flow only centres 
and saddles are allowed, whereas in the three-dimensional flow it is permissible to 
have foci in the large where fluid spirals in, but these spirals must asymptote to centres 
since the spanwise stretching of these phase-averaged structures is small. Note the 
clarity of the dislocated saddles in this figure. This is because the vortex sheets are 
‘fresh and young’ and because the first few structures are subject only to a small 
amount of phase jitter. These dislocated saddles, of course, would differ slightly in 
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detail from those treated in Q 3. Those in $3  were two-dimensional, i.e. plane stagna- 
tion point irrotational saddles. The saddles being observed here would be of a three- 
dimensional form (see Perry et al. 1980). 

Figure 9 shows one of the 16 phase-averaged velocity vector fields for the far-wake 
tests also viewed in a frame of reference moving with the structures. It can be seen 
that the dislocated saddles are more like regular saddles and appear somewhat merged 
with the centres to produce a pattern resembling simple horizontal shear. This is the 
result of substantial phase jitter. When a saddle and a centre of approximately equal 
strength are combined, this simple shearing pattern is formed. 

Overall the general geometrical features of these structures and, in particular, the 
entrainment pattern of irrotational fluid into these structures are very similar to the 
low-Reynolds-number results of Perry et al. 

4.3. Oscillating body 
As a matter of interest the authors decided to investigate the effect on coherence of 
oscillating the body at a frequency close to the natural frequency of vortex shedding. 
Following Perry & Lim (1978) the authors felt that certain simplifications would occur, 
enabling a more detailed study of these flow patterns. For instance, the phase of 
vortex shedding could be very accurately determined from the motion of the forcing 
mechanism and perhaps the phase-averaged results would be greatly enhanced. The 
body was oscillated 5' about its cross-stream axis a t  a frequency of 11 Hz. Figure 
7 ( d )  shows the phase-averaged vertical velocity fluctuations along the row corres- 
ponding with the body centreline for phases 1 and 9. The small decay of these structures 
with streamwise distance is apparent. 

FIGURE 11. Comparison of temporal mean velocity traverses: (a) 760 mm downstream of nor 
oscillating body; (b )  800 mm downstream of oscillating body. 
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FIUURE 12. Reynolds-stress distribution: (a) 760 mm downstream of non-oscillating body; 
( b )  800 mm downstream of oscillating body. 

Figure 10 shows one of the 16 phase-averaged vector fields with the authors’ 
interpretation of the separatrices superimposed. A surprising feature of this result is 
the appearance of centres of opposite vorticity and, from the classification of Perry & 
Lim, these structures exhibit jet-like qualities. In  unpublished work, Perry & Lim 
observed rather complicated features in their smoke patterns when the amplitude 
of tube oscillation was too high. Unfortunately, in this experiment the amplitude of 
rocking of the body was too large to produce a pure wake in the sense of Perry & Lim. 
Figure 11 shows a comparison of the time-averaged velocity profiles for the two cases. 
For the oscillating body the flow could be appropriately described as a ‘jet-wake’. 
The jet-like nature of this flow implies that the body is attempting to propel itself 
through the flow in much the same way as a fish or a bird. 

The authors suggest that the apparatus they have constructed and the techniques 
they have developed could lend themselves to the study of the propulsion of bodies 
and animals. 

4.4. Reynolds stress 
It is of interest to calculate what contribution the large-scale structures of turbulence 
contribute to Reynolds stress. Cantwell in his work found that the large-scale phase- 
averaged structures behind a cylinder contributed up to 50 % of the total Reynolds 
stress. For the results presented here, the authors found the phase-averaged struc- 
tures contributed only about 16 % of the total Reynolds stress. It must be realized 
that the phase jitter experienced in these experiments was considerably higher than 
those behind a two-dimensional cylinder, which was verified by cursory tests on a 
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cylinder during the early stages of this project. The larger amount of phase jitter 
implies greater washout of the phase-averaged data and, since the Reynolds stress 
depends on the product of velocity components, the inferred contribution will be 
considerably reduced. 

The most important feature of the Reynolds stress distribution is that the peaks 
occurred where the centres and saddles were passing. Figure 12(a) shows a typical 
distribution of the total Reynolds stress and the contribution of the phase-averaged 
structures. The authors believe that the large-scale structures carry more than is 
implied by these results. This was partially verified in the far wake of the oscillating 
body. The higher coherence led to a 30% contribution to the total Reynolds stress, 
as can be seen in figure 12 (b) .  

5. Conclusions and discussion 
Phase averaging has revealed that coherent large-scale structures exist in wakes 

behind three-dimensional blunt bodies at high Reynolds numbers. These structures 
retain their identity for long streamwise distances. 

The geometry of the phase-averaged vector field displays the same general features 
as in the low-Reynolds-number (unsteady laminar flow) wake results of Perry et al. 
(1980). The separatrices emanating from dislocated saddles spiral in towards centres 
and the irrotational fluid is entrained into the structures in the same way as in 
the low-Reynolds-number cases. Hence, a vortex loop system revealed in the 
smoke pictures of Perry & Lim might be appropriate for modelling these large-scale 
motions. 

It would appear that the fine-scale motions are decoupled from the large-scale 
motions in the following sense. The fine-scale motions act on the larger motions as an 
‘eddy viscosity’. In  the case where no fine-scale motions are present, as in the struc- 
tures of Perry & Lim, the general features of the eddy geometry were found to be 
independent of Reynolds number and hence independent of molecular viscosity. By a 
crude analogy perhaps one could say that, in the turbulent case, the broad features of 
the large-scale motions are not heavily influenced by the ‘eddy viscosity’ produced 
by the fine-scale motions. 

The deduced geometrical features of these large-scale motions are independent of 
the arbitrary choice of the method of phase detection. However, the true strength of 
these large-scale motions and their contribution to the Reynolds stress and turbulent 
energy depends on the method of phase detection. Their strength would be greatly 
enhanced if more sophisticated methods could be devised to account for phase jitter 
and washout. 

The phase-averaged structures were found to contribute between 15 and 30% of 
the total Reynolds stress. This is thought to be a low estimate due to the large 
amount of phase jitter experienced in these flows. The results of Cantwell for a 
cylinder indicate that the contribution may be as high as 50%. The peaks in the 
Reynolds-stress distribution occur where the centres and saddles are passing. 

The power of critical-point theory in describing these structures is evident. The 
theory is also useful for investigating the effect of phase jitter on washout. 
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